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Abstract. DentalCAD/CAM offers the prospects ofdrastically reducing the time 
to provide service to patients, with no compromise on quality. Given the state-of- 
the-art in sensing, design, and machining, an attractive approach is to have a tech- 
nician generate a restorative design in wax, which can then be milled by a machine 
in porcelain or titanium. The difficulty stems from the inherent outlier noise in the 
measurementphase. Traditional techniques remove noise at the cost of smoothing, 
degrading discontinuities such as anatomical lines which require accuracy up to 
5 to l0 ~tm to avoid artifacts. This paper presents an efficient method for the au- 
tomatic and accurate data validation and 3-D shape inference from noisy digital 
dental measurements. The input consists of 3-D points with spurious samples, as 
obtained from a variety of sources such as a laser scanner or a stylus probe. The 
system produces faithful smooth surface approximations while preserving critical 
curve features such as grooves and preparation lines. To this end, we introduce 
the Tensor Voting technique, which efficiently ignores noise, infers smooth struc- 
tures, and preserves underlying discontinuities. This method is non-iterative, does 
not require initial guess, and degrades gracefully with spurious noise, missing and 
erroneous data. We show results on real and complex data. 

I Introduction and overall approach 

Dental CAD/CAM has been revolutionizing dentistry for the past ten years, and is ubiq- 
uitous in every major dental group and laboratory today. Its main components are data 
acquisition, modeling, and milling systems. The only system widely used commercially 
is the CEREC system, produced by Siemens Inc. It is a self-contained unit with an imag- 
ing camera, a monitor, and an electrically controlled machine to mill inlay and onlay 
restorations from ceramic blocks. The accuracy is not good, and significant manual pro- 
cessing is required. Another system of interest, developed by Duret et al., was able to 
produce crowns with an average gap of  35 larn. The system is no longer commercially 
available, and suffered from lack of  speed and a cumbersome interface. 

An alternative approach, followed here, is to perform the restoration design manu- 
ally, in a laboratory, by using a conventional medium such as wax; then to transfer this 
physical design into a digital model. This information can be directly used to control a 
CAM machine to mill the restoration from a ceramic (or other) block. Typically, digi- 
tal measurements are sampled from a wax model, using palpation or optical sensing [4]. 
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Figure 1 shows the set up of one such commercial, multiple-view registration system, 
from which our data was obtained. As we shall see, though mostly accurate, the point 
sets obtained also contain many erroneous outlier readings, Given such noisy measure- 
ments, the challenge is to derive an accurate shape description automatically. Otherwise, 
even slight errors may result in artifacts which need to be corrected manually, or worse, 
may make the restoration unusable. 

Fig. 1. Data acquisition by a laser digitizer (courtesy of GC Corporation, Tokyo, Japan). 

While filter-based techniques such as discrete Fourier transform [10] are effective 
in suppressing spurious samples, they often "oversmooth", degrading sharp discontinu- 
ities and distinct features that correspond to important anatomical (preparation) lines and 
features. At present, unless intensive human intervention is used, it is impossible to con- 
struct an accurate representation that respects both medical and dental criteria requiring 
accuracy of up to 5 to 10 tam [5]. Recently, much progress has been made in computer 
vision for robust surface inference from clouds of points. Their application should re- 
sult in better 3-D dental model descriptions. This paper presents an integrated approach 
for inferring dental models in the form of surfaces (for capturing smoothness) and 3-D 
curves (for preserving shape discontinuities) from noisy dental data. 

Much work has been done in surface fitting to clouds of points. The majority of the 
approaches use the deformable model approach (first proposed by Kass et al. in [9] and 
then in [19]) which attempts to deform an initial shape for fitting the input, using en- 
ergy minimization. The work by Boult and Kender [2], Poggio and Girosi [13], Blake 
and Zisserman [3], Fua and Sander [6], Szeliski et al. [ 14], and many others belong to 
this category. Physics-based approaches proposed by Terzopoulos et al. [ 17, 18] model 
the problem as a multi-particle system governed by physics laws and equations. The ini- 
tial surface (or model), originally in equilibrium, is subject to external forces exerted at 
each data point. Such forces make the system converge to another equilibrium. Hoppe 
et al. [8] and Boissormat [1] use computational geometry techniques, treating the data 
as graph vertices and constructing edges using local properties. 

Most methods above are computationally expensive as an iterative process is tak- 
ing place. Also, they have limited potential in inferring faithful 3-D models from dental 
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data: most do not work in the presence of spurious noise; and surface discontinuities 
are usually smoothed out. Our method attacks these problems by applying [7, 15, 16], in 
which a non-linear voting process is used to achieve efficient feature segmentation and 
discontinuity detection. Our method is robust to outlier noise since its effect is reduced 
by accumulating a large number of tensor votes. 

Our overall approach is depicted in Figure 2. Each input point is first quantized in a 
3-D voxel array. A preprocessing step is then applied to estimate the normal to the sur- 
face. This step, as well as the surface and curve inference processes, is realized by ten- 
sor voting, which is outlined in section 2. Consequently, two independent 3-D saliency 
maps, one for surface (SMap) and one for curve (CMap), are produced. More details 
can be found in [7, 11]. Local extrema in these maps are extracted, resulting in a trian- 
gulation mesh (surfaces) and a set of directed and connected 3-D poly-line segments 
(curves). These features are then refined (if possible) to localize detected discontinu- 
ities and remove inconsistent surface patches (such as the spurious patches labeled in 
Figure 2). Finally, the surfaces and curves inferred in the 3-D model are coherently in- 
tegrated. Feature extraction and integration are summarized in section 3 (also detailed 
in [ 15, 16]). Results on real dental data are shown in section 4. Owing to space limita- 
tion, we omit many details in the present coverage, and refer readers to [7, 11, 15, 16] for 
more technical and mathematical details. 

2 Tensor voting and saliency maps 

The noisy dental data is in fact a scalar field, for which a preprocessing step for normal 
estimation at each point, or "vectorization", is required. Having produced a vector field, 
then, a "densification" step is needed for surface and curve extraction. Both processes 
are realized by tensor voting [11], in which data are represented by tensors, and data 
communication is achieved by voting. 
Tensor representation. A point in the 3-D space can assume either one of the three roles: 
surface patch, discontinuity (curve or point junctions), or outlier. Consider the two ex- 
tremes, in which a point on a smooth surface is very certain about its surface (normal) 
orientation, whereas a point on a (curve or point)junction has absolute orientation un- 
certainty. This whole continuum is thus abstracted as a general, second-order symmetric 
3-D tensor, which can be visualized geometrically as a 3-D ellipsoid (Figure 3). Such an 
ellipsoid can be fully described by the corresponding eigensystem with its three eigen- 
vectors l~'max, ~'rmid, a n d  ~rmi n and the three corresponding eigenvalues ~,max _> ~,mid ~_ ~r 
Rearranging the eigensystem, the 3-D ellipsoid is given by: (~max - ~nid)S d- (~nid -- 
2~,nin)P + ~ i n B ,  where S = (Zmax f'r,,~ defines a stick tensor, P = f'maxf"rmax + fZmiaf'rmid de- 
fines a plate tensor, and B = ^ ^ T ^ ^ T ^ ^ T Vma~V/nax -t- VmidVmi d + VminV~nin gives a ball tensor. These 
tensors define the three basis tensors for any 3-D ellipsoid. 
Geometrie Interpretation. The eigenvectors encode orientation (un)certainties: surface 
orientation (normal) is described by the stick tensor, which indicates certainty in a single 
direction. Uncertainties are abstracted by two other tensors: curve junction results from 
two intersecting surfaces, where the uncertainty in orientation only spans a single plane 
perpendicular to the tangent of the junction curve, and thus described by a plate tensor. 
At point junctions where more than two intersecting surfaces are present, a ball tensor 
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Fig. 2. Overall strategy of our method, using Crown-24 as illustration. 

is used since all orientations are equally probable. The eigenvalues encode the magni- 
tudes of orientation (un)certainties, since they indicate the size of the corresponding 3--D 
ellipsoid. We define three dense vector maps, in which each voxel of  these maps has a 
2-tuple (s, ~), where s is a scalar indicating saliency and ~ is a unit vector: 

�9 Surface map (SMap): s :  ~,max - ~nia, and ~ : ~',,~x indicates the normal direction, 
�9 Curve map (CMap): s :- ~mid -- ~min, and ~ : Vmin indicates the tangent direction, 
�9 Junction map (JMap): s = ~,nin, v is arbitrary. 

Tensor voting. Having outlined the tensor formalism, we now describe the voting algo- 
rithm for obtaining the tensor representation at each voxel and the above dense vector 
maps, thus achieving field densification. Suppose that we already have a vector field for 
densification (vectorization will be described shortly). First, each input vector is encoded 
as a general tensor, which is actually a very thin and elongated ellipsoid. Then, these in- 
put tensors are made to align with predefined, discrete versions of the three basis tensors 
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Fig.3. Decomposition of a 3-D ellipsoid into a general, second-order symmetric 3-D tensor. 

(kernels) in a convolution-like way. For example, the stick kernel design is: Given a nor- 
mal vector N at origin O and a point P (Figure 4), a sphere is chosen as the most likely and 
natural continuation between O and P, since curvature is kept constant. The normal to P 
is said to be "most likely". The set of all such "most likely" normals (with strength prop- 
erly scaled) in the 3-D space is discretized and collected as the stick kernel (Figure 4). 
When each input tensor has cast its stick, plate, and ball votes to neighboring voxels by 

Fig.4. The design, and one projection view of Stick kernel. 

aligning with the respective dense basis kernels, each voxel in the volume receives a set 
of directed votes. These directed votes are collected, using tensor addition, as a 3x3 co- 
variance matrix. Then, we diagonalize this matrix into the corresponding eigensystem 
and the above tensor formalism is applied. 
Veetorizing sealarfieids. Vectorizing a scalar field into a dense vector field is imple- 
mented exactly as the densification described above, except that each scalar input site is 
encoded as ball tensor, since no orientation information is given. After the voting step, 
the original input "balls" are replaced by true ellipsoids, which encode surface normal 
and curve tangent information. 
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3 Feature extraction and integration 

Local extrema in CMap (resp. SMap) are extracted by our extremal curve (resp. surface) 
algorithms [16]. The extracted features are integrated to produce a coherent surface and 
curve description, whenever possible. These processes are outlined in the following: 
Extremal curve extraction. Each voxel in the CMap holds a 2-tuple (s, f), where s is 
curve saliency and t indicates tangent direction. Suppose the CMap is continuous in 
which (s, t-) is defined for every point p in 3-D space. A point p with (s, i) is on an ex- 
tremal curve if any displacement from p on the plane normal to ~ will result in a lower 
s value, i.e. ~ - ~s 5~ -- ~ -- 0, where u and v define the plane normal to i at the voxel center. 
This definition therefore involves the detection of zero crossing in the u-v plane nornml 

to L To do this, we compute the saliency gradient ~ as, ~ = Vs  = ~ ~ . Define 
~ = R(~ x ~) where R defines a frame aligned with the u-v plane. By construction, ~: is 
the projection o f ~  onto the plane normal to f. Therefore, an extremal curve is the locus 
of points for which ~ = O. The corresponding discrete ~ can be similarly defined, from 
which a tracing algorithm can be readily defined. The output is a set of connected and 
oriented poly-line segments representing the extremal curves. 
Extremal surface extraction. Each voxel in the SMap holds a 2-tuple (s, ~) where s iin- 
dicates surface saliency and ~ denotes normal direction. As before, suppose the SMap is 
continuous in which (s, ~) is defined for every point p in 3-D space. A point is on an ex- 
tremal surface if its saliency s is locally extremal along the direction of the normal, i.e., 
d s  - 0. This definition involves the detection of zero crossing on the line aligned with ~, 
which is computed by defining a scalar q = n. g, where ~ was defined earlier. Therefore, 
an extremal surface is the locus of points for which q = 0. We define the corresponding 
discrete q, which can be processed directly by the Marching Cubes algorithm [12]: A 
polygonal mesh is thus produced. 
Feature integration. The final phase integrates surfaces, curves and junctions to pro- 
duce an unified 3-D model description. While tensor voting produces good results on 
smooth structures, it only detects discontinuities but does not properly localize them. 
This is because the SMap and CMap are independently interpreted. To integrate them, 
a curve detected in CMap is first treated as surface inhibitor in SMap so that when a 
smooth surface is traced, it is forbidden to enter region close to any detected disconti- 
nuities. With such a "trimmed" surface, the same curve is then treated as surface exciter 
for computing precise and natural surface junction. A set of"extended" surfaces are pro- 
duced, which will undergo subsequent refinement. 

4 Results 

We tested our system on a variety of crowns and inlays. An inlay is a cast filling that is 
used to replace part of a tooth, while a crown is a larger restoration. The data is acquired 
using the set-up shown in Figure 1. The wax shape, obtained from the dental laboratory, 
is rotated about the x-axis in 15 ~ (or 90 ~ ) increment so that 24 (or 4) successive views 
are visible to the sensor. The following tabulates the running times (in min) on a Sun 
Ultra 2 (Model 1300 with 256 MB RAM). 
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Data No. of points Voting Feature extraction Feature integration Total 
Mod-4 5217 4 2 6 
In/ay-4 2447 3 1 4 
Crown-4 8844 6 2 8 

Crown-24 60095 35 5 5 45 

Table 1. Processing times (in min) on Sun Ultra 2 (Model 1300 with 256 MB RAM). 

Mod-4. We first demonstrate in this and the next two examples the graceful degradation 
of tensor voting in the presence of spurious and missing samples. Because of this, feature 
integration is skipped (as outlined in section 3). A set of only 4 views of a Mod are dig- 
itized and quantized in 100xl00xl00 array, which contains 5217 points. This data set is 
difficult because it has a complicated shape, and has many missing and misleading data 
resulting from fewer registered views and self occlusion. Using the inferred surface and 
curve model, we can perform data  validation (Figure 5(a)): after voting, we validate 
each input point by simple thresholding of its associated surface or curve saliency. This 
shows a simple application of spurious noise elimination with the availability of a faith- 
ful model. The extracted extremal surfaces and curves are depicted in Figure 6(a). Note 
that surfaces are only correct from the discontinuity curves, for which they have low 
surface saliencies. However, these discontinuities are detected and marked since they 
are characterized by high curve saliencies. These detected junction curves allow further 
refinement or intervention to take place. 
Inlay-4. A set of  4 views of an Inlay are digitized, having 2447 data points quantized 
in a 70x50x70 array. This is a very complicated surface, and the data set is noisy, and 
contains many missing and erroneous readings. Result of data validation is shown in 
Figure 5(b). The extremal surfaces and curves extracted are shown in Figure 6(b). 
Crown-4. A sparse set of only 4 views of a Crown are digitized and quantized, using a 
100xl00xl00 voxel array. This data set contains 8844 points. We can recover the under- 
lying surface model, which is automatically marked with curves representing grooves 
and preparation lines. With a faithfully inferred model, we can perform data validation 
(Figure 5(c)). Figure 7(a) shows the resultant extremal surfaces and curves. 
Crown-24. A set of 24 views of a Crown are registered. The data set contains 60095 
points, quantized in a 100xl00xl00 array. We can detect the upper and lower surfaces 
of the Crown. The detected preparation line and the grooves are in turn used to produce 
a coherently integrated surface and curve description. Result of data validation is shown 
in Figure 5(d). Figure 7(b) shows the extracted extremal surfaces and curves. 

5 Conclusion 

We have presented an efficient and robust method, tensor voting, to automatically gener- 
ate faithful dental models, consisting of surfaces and 3-D curves, from very noisy mea- 
surements. As shown by our results, while further improvement can still be made (or 
simply provide us with more views of data), our working prototype indeed demonstrates 
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a very promising potential on significantly improving current dental CAD/CAM tex:h- 
nology, as our system produces faithful results despite that some sample data are noisy, 
missing and confusing. We not only interpolate smooth structures, but also respect im- 
portant anatomical lines, and filter out spurious outlier points as well, and hence offer the 
prospects for reducing time in providing necessary service. We expect to perform more 
quantitative error analysis, investigate the right level of details (e.g. data quantization), 
and compare our results on same complex data with outputs from other sites. 
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Fig. 5. A middle slice of extremal surfaces, the original noisy data, and the validated data set, for 
(a) Mod-4, (b) Inlay-4, (c) Crown-4, and (d) Crown-24 
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Fig.6. Two views of the original noisy data, the extremal discontinuity curves and surfaces in- 
ferred for (a) Mod-4 and (b) inlay-4. 
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Fig. 7. Different views of the original noisy data, the extremal discontinuity curves and surfaces 
inferred for (a) Crown-4 and (b) Crown-24. 


