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Abstract

Dental CAD/CAM offers the prospects of drastically reducing the time to provide service to patients,
with no compromise on quality. Given the state-of-the-art in sensing, design, and machining, an attractive
approach is to have a technician generate a restorative design in wax, which will be milled by a machine in
porcelain or titanium. The difficulty stems from the inherent outlier noise in the measurement phase. Tra-
ditional techniques remove noise at the cost of smoothing, degrading discontinuities such as anatomical
lines which require accuracy up to 5 to 10 pwm to avoid artifacts. This paper presents an efficient method
for the automatic and accurate data validation and 3-D shape inference from noisy digital dental measure-
ments. The input consists of 3-D points with spurious samples, as obtained from a variety of sources such
as a laser scanner or a stylus probe. The system produces faithful smooth surface approximations while
preserving critical curve features such as grooves and preparation lines. To this end, we introduce a voting
technique, which efficiently ignores noise, infers smooth structures, and preserves underlying discontinu-
ities. This method is non-iterative, does not require initial guess, and degrades gracefully with spurious

noise, missing and erroneous data. We show results on real, complex, and noisy dental data.
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Automatic, Accurate Surface Model Inference for Dental CAD/CAM

1 Introduction

Dental CAD/CAM has been revolutionizing dentistry
for the past ten years, following Prof. Duret’s pioneering
work in the 1970s [4], and is ubiquitous in every major
dental group and laboratory today. Its main components in-
clude data acquisition, modeling, and milling systems
(Figure 1). The only system widely used commercially is
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the CEREC system, produced by Siemens Inc. It is a self-
contained unit with an imaging camera, a monitor, and an
electrically controlled machine to mill inlay and onlay res-
torations from ceramic blocks. The accuracy is not good,
and significant manual processing is required. Another
system of interest, developed under Prof. Duret’s leader-
ship, was able to produce crowns with an average gap of 35
um . The system is no longer commercially available, and
suffered from lack of speed and a cumbersome interface.

An alternative approach, followed here, is to perform
the restoration design manually, in a laboratory, by using a
conventional medium such as wax; then to transfer this
physical design into a digital model. This information can
be directly used to control a CAM machine to mill the res-
toration from a ceramic (or other) block.

The major problem is the transfer from a physical, wax
shape, to the computer model. Digital measurements are
sampled from the wax model, using palpation or optical
sensing [5]. Figure 2 shows the set up of one such commer-
cial, multiple-view registration system, from which our
data were obtained. As we shall see, the point sets ob-
tained, though mostly accurate, also contain many errone-
ous outlier readings.

—_—

‘ laser head (fixed)

camera T T light source z
\ /
\ /
rotation. 4 _|_ _ lemmeal ™\ — — = = = = — - X

axis
fixtulre ‘_’_in table(moving)

L 3
Figure 2. Data acquisition by a laser digitizer (courtesy of
GC Coporation, Tokyo, Japan).

Given such noisy measurements, the challenge is to
derive an accurate shape description automatically. Other-
wise, even slight errors may result in artifacts which need
to be corrected manually, or worse, may make the restora-
tion unusable.

While filter-based techniques such as discrete Fourier
transform [11] are effective in ignoring spurious samples,

they often “oversmooth”, degrading sharp discontinuities
and distinct features that correspond to important anatom-
ical (preparation) lines and features. At present, unless in-
tensive human intervention is used, it is impossible to
construct an accurate representation that respects both
medical and dental criteria requiring accuracy of up to 5 to
10 um [6].

Recently, much progress has been made in computer
vision for robust surface inference from clouds of points.
Their applications should result in better 3-D dental model
descriptions. This paper presents an integrated approach
for inferring dental models in the form of surfaces (for cap-
turing smoothness) and 3-D curves (for preserving shape
discontinuities) from noisy dental data.

Much work has been done in surface fitting to clouds
of points. The majority of work use the deformable model
approach (first proposed by Kass ef al. in [10] and then in
[19]) which attempt to deform an initial shape using energy
minimization so that the deformed shape fits a set of points.
The work by Boult and Kender [2], Poggio and Girosi [13],
Blake and Zisserman [3], Fua and Sander [4], Szeliski et al.
[14], and many others belong to this category. Physics-
based approaches proposed by Terzopoulos et al. (in [17]
and [18]) model the problem as a multi-particle system
governed by (physics) laws and equations. The initial sur-
face (or model), originally in equilibrium, is now subject to
external forces exerted at each data point. Such forces
make the system converge to another equilibrium. Hoppe
et al. [9] and Boissonnat [1] use computational geometry
techniques, which treat the data as vertices of a graph and
construct edges based on local properties.

Most methods above are computationally expensive as
an iterative process takes place. Also, they have limited po-
tential in inferring faithful 3-D models from dental data:
most do not work in the presence of spurious noise with
surface discontinuities usually smoothed out.

Our method attacks these problems by applying a re-
cent work on sparse 3-D data ([8] and [16]), where a non-
linear voting process is used to achieve efficient feature
segmentation and discontinuity detection. Our method is
robust to outlier noises since its effect is reduced by accu-
mulating a large number of vector votes. We give an over-
view, and outline our paper in the next section.

2 Overall approach

Our method is summarized in Figure 3. Each input
point is first quantized in a 3-D voxel array. A preprocess-
ing step is then applied to estimate the normal to the sur-
face. This step, as well as the surface and curve inference
processes, is implemented in a convolution-like operation
with predefined vector fields. The design of these fields is
described in section 3. Such fields, when aligned with an
estimated input normal, associate to its neighborhood vox-
els a preferred orientation.



By such alignment, we accumulate, at each voxel, a
collection of vector “votes”. Two independent 3-D saliency
maps, one for surface (SMap) and one for curve (CMap),
are produced. Details on voting and saliency maps are ex-
plained in section 4, and its full version in [8].

Local extrema (yellow areas in Figure 3) in these
maps are extracted, resulting in a triangulation mesh (sur-

tion 5 (also detailed in [15]). These features are then be re-
fined to localize detected discontinuities and remove
inconsistent surface patches (such as the spurious patches
labelled in Figure 2). Consequently, the surfaces and
curves inferred in the 3-D model are coherently integrated.
Feature refinement is described in section 6 (also detailed
in [16]). Finally, results on real dental data are shown in

faces) and a set of directed and connected 3-D poly-line
segments (curves). Feature extraction is described in sec-

section 7 (also on the accompanying video tape).
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Figure 3 Overall strategy of our method, using crown as a running example. (Only one slice of the 3-D SMap and CMap are shown)
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Figure4  The design of voting fields. (a) Given a point B all normals (thin arrows) at point P are equally likely. We choose to

represent all of them with one vector (thick arrow). (b) Given a patch and point P, the circular continuation is most appealing.

3 The design of the fields

There are three types of 3-D vector voting fields in [8]:
the 3-D point field (P-field), curve segment field (C-field),
and Diabolo field (D-field). P-field is used in preprocessing

for normal estimation, and D-field is used for surface and
curve inferences.

P-field. Without any a priori assumption, given a point
P and an origin O, the most likely surface passing through



O and P is a family of planes containing these two points,
represented by a single vector oP (Figure 4(a)).

D-field. Given a normal vector N at origin O and a
point P (Figure 4(b)), without any a priori information,
the most likely and “natural” surface through P is the cir-
cular continuation between O and P, because it keeps the
curvature constant. The “most likely” normal is normal to
that arc at P. The collection of such most likely normal
vectors comprise the D-field. Its 3-D shape resembles a se-
ries of “concentric bowls” (Figure 5)

In all cases, the weight of each vector is inversely pro-
portional to the distance from O and the curvature of the
underlying circular arc connecting O and P. A Gaussian
decay function is used for that purpose.

4 Vector voting and saliency maps

Suppose we already have normals at each point (pre-
processing will be described shortly). The output of voting
is two 3-D dense saliency maps, one for curve (CMap) and
one for surface (SMap). Computing saliency maps is done
by voting, which is realized by aligning each input normal
vector (voter) with D-field (Figure 5). The resulting map is
a collection of oriented fields. Each voter accumulates the
‘votes’ for its own preferred orientation and strength from
every other input in the volume.

Figure 5 Voting by aligning D-fields with each input voter.

The contributions to a voxel are treated as vector
weights, and we compute the central moments of the re-
sulting system, which is equivalent to computing a 3-D el-
lipsoid having the same moments and principal axes. Such
a physical model acts as an approximation to a majority
vote which gives both the preferred direction and measure
of the agreement.
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Let DF = (DF',DF',DF°) denote any vector consti-
tuting the D-field, and A 1, be the alignment operator for
voter 1, at voxel (i, jk) . Then, for each voxel (x, y, z)in
the entire 3-D array, we define the accumulated vote, O, _,

as a 3x3 variance-covariance matrix where mx: is defined
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in the following, with 0<u, v, w<2 and u+v+w = 2.
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We decompose the above matrix of central moments

0, into the corresponding eigensystem, i.e.,
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where A . <A . <A are the three eigenvalues,
and the Vs denote the corresponding eigenvectors of the
system. Such decomposition always yield real, non-nega-
tive eigenvalues as the matrix is positive and semi-definite.

The three eigenvectors correspond to the three princi-
pal directions of an ellipsoid in 3-D, while the eigenvalues
describe the strength and agreement measures of the 3-D
votes. On a smooth surface, the votes produce high agree-
ment around one direction, so A, » X, .. A o

(Figure 6(a)). Along the curve bounding two surfaces, two
of the eigenvalues are high, and one small, leading

tod,,;; » X,,;, (Figure 6(b)).
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Figure 6  The two important voting ellipsoids. (a) Amax >>
Anid ~ Mnmin, high agreement in exactly one direction (a surface).
(b) Amax ~ Amid >> Mmin, high agreement in exactly two
orientations (an intersection, or 3-D curve).

Thus, after vote accumulation, two 3-D voxel maps
defining the surface and curve saliencies are produced.
Each voxel of these maps has a 2-tuple (s,¥), where s isa
scalar saliency measure and? is a unit vector:

e surface map (SMap): s = My — M,y as surface

ax

saliency; ? = v, indicates the normal direction.

e curve map (CMap): s = A,,;—- M, ;

indicates the tangent direction.

mid = Mmin 5 CUFVE

saliency; ¥ = V.
Pre-processing for normal estimation

Normal inference is also achieved by voting: P-field is
aligned with each input point and votes are collected exact-
ly as described above, but only at the voters, making this
step computationally inexpensive. As a result of this step,
each voter now holds a normal, obtained as the eigenvector
V ax COTespondingto A —A ...

S Surface and curve extraction

Local extrema in CMap (resp. SMap) are extracted by
the extremal curve (resp. surface) algorithms to be outlined
here. We refer the interested reader for more details to [15].

5.1 Extremal curve extraction

Each voxel in the CMap holds a 2-tuple (s.7), where
§ = Apig—Ayin i8 curve saliency and 7 = v, indicates
tangent direction. Suppose the CMap is continuous in



which (s.}) is defined for every point p in 3-D space. A
point p with (s) is on an extremal curve if any displace-
ment from p on thg plane normal to ¥ will result in a lower
s value,le, = — = 0, where u and v define the plane
normal to } &t the Yoxel center (Figure 7):
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Figure 7 (a) An extremal curve. (b) Curve saliency is
projected onto the plane perpendicular to the tangent to the
curve. (c) A change in signs of derivatives in both u and v
directions indicate a curve passes through the voxel.

This definition therefore involves the detection of zero
crossing in the u-v plane normal to . To do this, we com-
pute the saliency gradient 3 as,

=P%%:w
dx dy 9z

Define § = R (1x2) where R defines a frame align-
ing with the u-v plane. By construction, § is the projection
of # onto the plane normal to . Therefore, an extremal
curve is the locus of points for which 3 = 0. The corre-
sponding discrete § can be similarly defined, from which
a tracing algorithm can be readily defined. The output is a
set of connected and oriented poly-line segments repre-
senting the detected extremal curves.

5.2 Extremal surface extraction

Each voxel in the SMap holds a 2-tuple (s,3) where
§ = Apax— Ay, indicating surface saliency and 4 = v,
denoting the normal direction. As before, suppose the
SMap is continuous in which (s,2) is defined for every
point p in 3-D space. A point is on an extremal surface if
its saliency s is locally extremal along the direction of the
normal (Figure 8), i.e., =5 = 0
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Figure 8  An extremal surface. (a) A surface patch with its
normal @ = V_ __(b)the saliency along the normal, (c) the
derivative of mTen

This definition involves the detection of zero-crossing
on the line aligned with #, which is computed by defining
ascalar g = 7i- g, where § was defined earlier. Therefore,
an extremal surface is the locus of points for which ¢ = 0.

We define the corresponding discrete ¢, which can be
processed directly by the Marching Cubes algorithm [12]:
A polygonal mesh is thus produced.

6 Feature refinement by hybrid voting

The final phase integrates surfaces and curves as ob-
tained to produce an unified 3-D model description. While
the voting technique described in [8] and in section 4 pro-
vides good results on smooth structures, it only detects dis-
continuities but does not properly localize them. This is
because SMap and CMap are independently interpreted
without cooperation. For example, when SMap is used
alone for surface inference, it may produce incorrect sur-
face patches around surface discontinuities where they
have low surface saliencies (e.g. the labelled spurious
patches in Figure 2); or these discontinuities, though de-
tected in CMap, may be smoothed out in SMap.

Thus, initial extracted curves and surfaces need to
work together in this phase. To this end, hybrid voting, us-
ing different 3-D excitatory and inhibitory fields, which are
derived from section 3, is used. In summary, a curve detect-
ed in CMap is first treated as surface inhibitor in SMap so
that when a smooth surface is traced, it is forbidden to enter
regions close to any detected discontinuities. With such
“trimmed” surface, the same curve is then treated as sur-
face exciter for computing precise and natural surface
junction. A set of “extended’” surfaces are produced. These
surfaces will undergo subsequent refinement to produce a
coherently integrated surface and curve descriptions.

Figure 9 summarizes the feature refinement process.
We refer the interested readers to [16] for further details.
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Figure 9  Summary of the cooperative feature refinement.

7 Results

We tested our working prototype on a variety of
crowns and inlays. Data are acquired using the set-up
shown in Figure 2. The wax shape is rotated about the x-
axis in 15 (or 90 ) increment so that 24 (or 4) successive
views are visible to the sensor. In the following, we empha-
size on: (a) input validation, (b) automatic surfaces, and (c)
discontinuity curves extraction., with (b) and (c) already
explained above. In fact, (a) is an immediate extension: Af-
ter voting, we classify each point in the original noisy input
as being “inlier” (resp. “outlier”) if its associated surface or
curve saliency is high (resp. low). This shows a simple ap-
plication of spurious noise elimination when a faithful
model is available.

trimmed surfaces

_D,.




With a fixed and small 5x5x5 vector field used in vot-
ing (the most time-consuming part), it has been shown in
[16] that our algorithm runs in linear-time, or O(n) time
where n is total number of input points. The following tab-
ulates all actual processing times (in min) on the example
data, measured on a Sun Ultra 2. Owing to severe missing
and erroneous data, feature refinement is not run except for
Crown-24. Also, we shall see that 24 views are 100 many,
while 4 are barely enough. Nonetheless, in all cases, our
method produce accurate and faithful results and degrades
gracefully with missing data and erroneous noise.

no of " Peature Feature

points Voting extraction | refinement e
Crown-4 8844 6 2 - 8
Mod-4 5217 4 2 - 6
fnlay-4 2447 3 | - 4
Crown-24 | 60095 35 5 5 45
7.1 Crown-4

We first demonstrate in this and the next two examples
the graceful degradation of the voting method in the pres-
ence of spurious and missing samples. Because of this, the
detected features are not further refined as outlined in sec-
tion 6. Though, shape discontinuities are still faithfully and
automatically marked. A sparse set of only 4 views of a
Crown are digitized and quantized in a 100x 100x100 voxel
array, which contains 8844 points. Figure 10 depicts sam-
ple slices of the noisy and missing data. Despite that, we
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Figure 10 Three slices of the original input of Crown-4 at (a)
x=30, (b) x=60, (c) x=79, showing missing and erroneous data.
can still recover the underlying surface model, which are
automatically marked with curves representing grooves
and preparation lines (though not as good as Crown-24).

With a faithfully inferred model, we can perform “in-
layer” classification to filter out “outlier” noises present in
the original data. Applications only requiring such filtered
data set can skip feature extraction and refinement stages,
thus speeding up the whole process. Figure 11 shows the
result of inlier classification, and Figure 18 shows the re-
sultant extremal surfaces and curves.

7.2 Mod-4

A set of 4 views of a Mod are digitized and quantized
in 100x100x 100 array, which contains 5217 points. This
data set is more difficult because of its more complicated
shape, and more missing and misleading data resulting
from fewer registered views and self occlusion (Figure 12).
Results of inlier classification are shown in Figure 13, and
extremal surfaces and curves in Figure 19. While the final
curve and surface descriptions are not as coherently inte-
grated as that of Crown-24, the results are still reasonably
faithful. Note that surfaces are only correct from the dis-

“(b) “(c)
Figure 11 (a) A slice of the extremal surfaces of Crown-4. Part
of the lower side is missing due to severe missing data (b) the
original noisy data set and (c) result after inlier classification,
with outliers removed.
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Figure 12 Three slices of the original input of Mod-4 cut at (a)
x=40, (b) x=44, (¢) x=48, showing missing and erroneous data.

(b)" (c)
Figure 13 (a) A slice of the extremal surfaces of Mod-4, (b) the
original noisy data set and (c) result after inlier classification,
with outliers removed.

continuity curves, for which they have low surface salien-
cies. However. these regions are detected and marked by
extremal curve algorithms as they are characterized by
high curve saliencies. This allows further manual refine-
ment or intervention to take place if necessary.



7.3 Inlay-4

A set of only 4 views of an Inlay are digitized, having
2447 data points quantized in a 70x50x70 array. This is a
very complicated surface, and the data points are noisy,
missing, and erroneous (Figure 14). Results of inlier clas-
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Figure 14 Three slices of the original input of Inlay-4 cut at (a)
x=23, (b) x=36, (c) x=50, showing missing and erroneous data.
sification is shown in Figure 15. The extremal surfaces and
curves extracted are shown in Figure 20.
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Figure 15 (a) A slice of the extremal surfaces of Inlay, (b) the
original noisy data set in the same view, and (c) result after inlier
classification, with outliers removed.

7.4 Crown-24

A set of 24 views of a Crown are registered, which
contain 60095 points, quantized in a 100x100x100 array.
Figure 16 depicts three slices of the data, showing mostly
accurate but also redundant (thick), spurious and missing
data. We can detect the upper and lower sides, the prepara-
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Figure 16 Three slices of the original input of Crown-24 at (a)
x=42, (b) x=65, (¢) x=80, with mostly accurate and erroneous
data.

tion line, and the grooves, which are in turn used to pro-
duce a coherently integrated surface and curve description.
With an inferred model, we are able to perform inlier clas-
sification (Figure 17). Figure 21 shows the three views of
the original input, the extremal discontinuity curves (i.e.
grooves and preparation line) and surfaces (i.e. upper and
lower sides) of the crown.

Note that the total processing time for Crown-24 is
much longer than other examples, which is due to the sheer
size of data, many of which are indeed redundant. The op-
timal number of views may depend on various factors, and
is the subject in need of further investigation.
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Figure 17 (a) A slice of the extremal surfaces of Crown-24
showing the upper and lower side with preserved and coherently
integrated discontinuity, (b) the original noisy data set and (c)
result gfter inlier classification, with outliers removed.

8 Conclusion

We have presented an efficient and robust “voting”
method to automatically generate faithful dental models,
consisting of surfaces and 3-D curves, from very noisy
measurements. As shown by our results, while further im-
provement can still be made (or simply provide us with
more views of data), our working prototype indeed demon-
strates a very promising potential on significantly improv-
ing current dental CAD/CAM systems, as our system
produces faithful results despite that some sample data are
noisy, missing and confusing. We not only interpolate
smooth structures, but also respect important anatorical
lines, and filter out spurious outlier points as well. Our
method is efficient, effective, and automatic which offers
the prospects to reduce time to provide necessary service.
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Figure 19 Mod-4. Two views of the original noisy data, the extremal discontinuity curves and surfaces inferred.



Figure 21 Crown-24. Top, bottom and side views of the original noisy data, the extremal curves (representing surface orientation
discontinuities ) and extremal surfaces extracted using voting.



